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Viral shift and drift, report part 1
Jonathan E. Allen, Monica K. Borucki, Tom R. Slezak Lawrence Livermore National Laboratory

The ability for RNA viruses to evolve at a high rate has the potential to confound existing 
medical technology by making it more difficult to accurately diagnosis and treat RNA based
infectious disease.  The rapid mutation rates of RNA viruses give a virus the ability to adapt to 
novel selective pressures, which can potentially support zoonosis, sustained outbreaks in a novel 
host, and resistance to anti-retroviral treatments.  A key contributor to an RNA virus’ mutation 
rate is the lack of a proof reading enzyme to correct for mis-incorporated bases when 
transcribing a daughter RNA particle. Thus, there are potentially many opportunities for new 
mutations to be randomly introduced and subsequently fixed in a key subset of the viral 
population. This is a feature, which we refer to in this report as genetic drift.  One of the hurdles 
to understanding the role of genetic drift in the spread of RNA virus outbreaks is the need to 
analyze a densely sampled outbreak using whole genome sequencing in order to measure the 
amount of mutation occurring on a small time scale.  The recent advances in sequencing 
technology have now lowered the data collection cost barriers to allow the measure of evolution 
not just among the consensus virus sequences on a shorter time scale, but potentially capture all 
the distinct genetic variants that are circulating within a single infected host. Tracking the 
distinct genetic variants within an infected individual provides additional information on genetic 
drift within the host, and can help determine whether mutations that are important for emerging 
disease are able to persist at the sub consensus level.

We thus are undertaking an effort to identify the benefits and challenges to measuring genetic 
drift and its role in viral outbreaks through the examination of a case study, a rabies virus 
outbreak in Northern California.  In collaboration with the California Department of Public 
Health, we obtained access to 50 samples of rabies infected animals (primarily foxes, and 
skunks).  In order to gain an understanding of how the sequencing technology can be used to 
measure small numbers of genetic mutants in a population and determine the degree of 
sensitivity to detect variation needed, we sequenced three samples with “ultra-high” sequencing
coverage using an Illumina sequencer.  The results of this experimental work are the focus of this 
report, which generates the data that is used to devise a sequencing strategy for the remaining 
samples. Here is a brief listing of the project results detailed in this report, each of which will be 
explained in the following sections.  Results include:

 A rare variant SNP detection pipeline for Illumina data.
 An estimate for the total number of mutations within a single fox infected host.
 An estimate for the relative frequency of mutations within a single fox infected host.
 Comparison of mutants in the two infected fox samples.
 A practical strategy for sequencing a large number of samples from a viral outbreak.



In the initial experiment, our goal was to evaluate the potential for the latest high throughput 
sequencing tools to detect genetic variants within a single host including rare variants and 
determine how much sequencing coverage is needed and how best to overcome the inherent 
noised introduced from DNA amplification and sequencing errors.  Three samples were 
sequenced each in separate lanes of a single flow cell of an Illumina IIx sequencer using paired-
end  reads on short genomic fragment inserts using read lengths of approximately 112 bases.  
The three samples consisted of a plasmid control containing a 1 kb insert for the rabies virus 
polymerase gene. Two additional samples were taken from brain tissue of rabies-infected foxes
from the Northern California outbreak. All samples were amplified using PCR prior to 
sequencing.  To capture the whole genome of the rabies overlapping PCR amplicons were 
generated that span the length of genome.  Since the PCR primers could potentially introduce 
false mutations into the amplicon pool due to none specific binding, all of the primer regions 
were masked out for the downstream analysis.  Table 1 summarizes the output generated in the 
initial runs.

Table 1 Data generated for initial Illumina sequencing run.

Sample Sequence output (gigabases) Number of Reads
Plasmid control 6.3 2 x 28,325,049
Rabies 1 6.06 2 x 27,063,566
Rabies 2 6.06 2 x 27,051,934



Figure 1. Process for sequencing paired-end reads. (Image taken from Illumina.com)

Figure 1 shows Illumina’s procedure for generating a single “paired-read”, where the genomic 
fragment is placed on the sequencer’s flowcell prior to clonal amplification. Effective genome 
coverage is reported later in the report as the average number of distinct sequenced DNA inserts 
covering any given position in the genome.  The raw coverage value measuring all mapped reads
was approximately 450,000x coverage.  It must be noted that calculating effective coverage 
(later in the report) on a per sequenced insert basis rather than on an individual per read basis, 
avoids “double counting” of overlapping reads taken from the same insert. Figure 2 shows a 
schematic of how the two paired reads overlap given the observed average insert length of 142, 
with a range of from 95 to 188 normally distributed (personal communication Eureka genomics).

Figure 2. Example of paired-end read coverage of a sequenced insert, where the read lengths are 112 and the observed 
average fragment length of 142.  Dotted lines denoted the double stranded DNA insert fragment, numbers between the 
dotted lines denote positions in the sequence (from 0 to 142). The diagram shows an 82 base overlap between the two 
reads.



A rare variant SNP detection pipeline
The plasmid control sample was used to empirically model potential false SNP calls introduced 
through errors generated from the PCR amplification of the sample and errors introduced by the 
sequencing by synthesis reactions carried out by the Illumina sequencer (Fuller et al., 2009).  
Thus, the initial single clone control sample was amplified using the same PCR amplification 
protocol and sequenced.   The control reference sequence generated with a separate Sanger 
sequencing run and the sequenced reads were mapped using our standard read mapping protocol, 
which is applied identically for all sequenced samples.  Any polymorphisms that deviate from 
the consensus sequence are taken to be examples of error introduced at either the PCR 
amplification step or the sequencing step.  Figure 3 shows the procedure for computing an 
observed error rate, by calculating the percentage of non-consensus base calls at each position in 
the reference genome from genome position 0 to N to produce a distribution of observed error 
values that effectively measure the expected number of miscalls at any given position.  Note that 
since the samples of interest are RNA viruses, there is an initial reverse transcription step, where 
errors can occur but cannot be modeled, thus the error rate of the reverse transcription step 
presents a fundamental limit on the ability to distinguish experimental errors from real mutations 
within the sample’s viral population.  Given the relatively low error rates of the reverse 
transcriptase and the lack of clonal amplification in this implies, that these types of error will 
likely make up a very small percentage of the overall error.

Figure 3. Procedure for calculating observed error rates.  Each position in the genome, S0 to SN is treated as an 
independant observation, where the percentage of miscalls are tallied to give N observed error rates.

The read mapping pipeline applies an open source read mapping software tool, SHRiMP 
(Rumble et al. 2009), which was chosen for the tool’s ability to conduct sensitive mapping (using 
an optimal Smith-Waterman alignment) to map as many reads as possible in the face of 



individual errors within each read.  The goal is to map as many reads as possible, and then 
carefully evaluate each read’s potential to reliably contribute evidence for a variant in the 
population, depending on the specific variant in question.  Thus, a key requirement is that the 
reads be mapped to a reference sequence, and the SNP calling procedure involves enumerating 
over every position in the reference genome to consider the possibility of a nucleotide variation 
occurring at that position. Hence, novel base insertions are not considered. Note that although a 
reference sequence is used, this is not expected to be a limitation in cases where an existing 
reference sequence does not exist.  Given the relatively small genome size of the RNA viruses 
and lack of large scale genome rearrangements a consensus reference sequence should be 
recoverable from the raw reads. Moreover, since the protocol uses a PCR amplification step it is 
likely whatever original reference sequences were used to design the amplification primers, 
likely will not be too divergent in practice. When evaluating each position in the reference 
genome, a simple rule set is applied to decide when a read should contribute to the presence or 
absence of a variant: the read base call quality score must be 35 or higher (an observed above 
average quality score) over an 11 nucleotide window (+-5 bases around the query nucleotide).  
Any predicted indel is excluded from consideration.  A second additional feature was evaluated, 
which was to require that read pairs overlap the query region and agree on the same base call.

Using paired-end reads improves Illumina ultra-rare variant detection
Figure 4 shows the analysis of the control sequence based error rates comparing the use of each 
read independently (blue line) versus using only the overlapping paired reads with agreeing base 
calls (green line). The x-axis gives the relative frequency of observed error rate across the control 
sequence and shows that two distinct error models emerge.    On average, the error rate for the 
paired read approach is about half the rate of using reads independently (0.00025 versus 0.0005) 
but equally importantly, the range of error rates is much smaller for the paired end data, with a 
maximal observed error rate of 0.00058.  By contrast relying on single read derived base calls 
introduces higher variance.  Thus, to make high confidence SNP calls using single read derived 
calls must in practice assume a much higher error rate to preclude the possibility of errors that 
are less frequently introduced but still substantial in number.



Figure 4. Shows a probability density plot for the two types of error models, using each read independently (blue) or 
using paired reads for error validation (green).

Currently the error correction approach described by Eriksson et al. is used, which defines a 
Binomial error model in terms of the observed error rate and the total number of overlapping 
reads.  The model defines the expected number of non consensus bases to occur due to random 
error given the error rate for a given number of observed reads, using a preset P-value.  In order 
for a non-consensus base call to be made, a minimum number of reads must occur that exceed 
the amount that is expected by random chance given the error rate and sequencing coverage.  
The P-value was set to 0.01, since the experiments will look typically at 10,000 positions in the 
genome, this is the value used to correct for multiple hypothesis testing.



An estimate for the total number of mutations within a single host

Figure 5. Estimate for the number of mutants present in the population, conditioned on different error rates.  Y-axis 
shows different estimates of total SNP counts, versus the percentage of predicted SNPs from the total pool that are 
expected to be false positives.  The number of high confidence SNPs are highlighted where the x-axis is at 0.

Figure 5 shows an estimate for the expected number of mutations using different confidence 
thresholds on the error rates using the paired end read error model shown in Figure 4.  The idea 
is that the true probability of an error at any given position in the genome is governed by the 
distribution in Figure 4, thus the most conservative estimate uses the highest observed error rate 
(0.00058), but the distribution suggests that this value may be too strict and lead to false 
negatives.  To provide additional estimates of the total true SNP count, the error rate is iteratively 
dropped, but as the error rate goes down the probability that the true error rate is in fact higher 
(leading to false positives) goes up and must be taken into account.  For example, if the 
presumed error rate is 0.00029, according to the distribution, there is a 5% chance that the true 
error rate is in fact higher.  Therefore, when using 0.00029 as the error rate in the Binomial test, 
in the example of Rabies 1 sample would predict 508 SNP calls, but we expect 25 (5%) of these 
to be false positives, to account for when the true error rate is higher.  Using this approach 
suggests that the maximum number of SNPs for the rabies 1 and rabies 2 samples are 673 and 
593 respectively.  This raw count is drawn from a much larger pool of candidate SNPs, for which 
we know many must be false positives, and the difficulty lies in the fact there is no empirical 
way to distinguish the pool of real variants from errors.  Instead, we focus on the “high 
confidence” SNPs, which assumes a “worst case” higher error rate, and thus require that more 
reads supporting the mutant must be present before reporting the mutation is real.



Figure 6.  Shared and unique high confidence mutants in both rabies populations. 84 shared SNPs.  Number in 
parentheses show number of SNPs where the regional coverage is higher in the sample containing the SNP call.

Quality control is critical to prevent “over-interpreting” biological 
results
Figure 6, shows the breakdown of high confidence mutations between the two rabies samples, 
with 84 shared between the two samples, and Rabies 1 and Rabies 2 having 65 and 35 of their 
own respectively unique mutant set.  The fact that the rabies 1 sample shows more mutants than 
the rabies 2 sample highlights an important factor of the sequencing process, which is the
potential lack of uniformity of coverage across multiple samples.  With higher coverage comes 
the potential to report more rare variants, thus it is important when comparing multiple samples 
to determine whether the reported presence or absence of a mutant relative to comparable 
samples is not due to higher or lower coverage.  In the majority of cases 49 of 65 for rabies 1 and 
22 of 35 for rabies 2, cases where a sample specific mutant is reported, correspond to rare 
variants, where the coverage is also higher in that sample.  Moreover, interestingly, there was 
noticeable difference in the quality of the sequencing output generated for the two samples, 
which is highlighted in Figure 7.  



Figure 7.  Average quality scores across the physical layout of the flow cell. (Figure taken from Eureka genomics quality 
control report.)

Figure 8.  Histogram showing the distribution of effective coverage in each rabies sample.

The figure compares the average quality scores for sequenced reads and highlights the fact that 
there are two regions in the flow cell, where the quality scores of the reads of the rabies 2 sample 
dip far below the average.  The pipeline’s quality filtering will thus ignore many reads with the 
lower quality scores leading to a lower effective coverage for the rabies 2 sample.  This 
observation is confirmed by Figure 8, which shows that the most common effective coverage 
(after quality filtering) exceeds 200,000x coverage for the rabies 1 sample, but is closer to 



100,000x coverage for the rabies 2 sample. Thus, the difference in mutant count between the 
rabies 1 and rabies 2 is explained not by a biological difference, but through inherent differences 
in the sequencing process.  

An estimate for the relative frequency of mutants within a single fox 
infected host. 
The majority of the identified mutants are exceedingly rare in the population.  Even when 
applying the more conservative error rate, the high 100,000x+ coverage allows for exceptionally 
sensitive detection of rare variants down to 0.08% level.  For the purpose of this work, sensitivity 
is defined in terms of the number of reads showing the variant divided by the total number of 
reads overlapping the genome position. Thus, a variant that occurs with 0. 08% frequency at a 
region of 100,000x coverage would imply 80 reads contain the variant.  Figure 9 shows the 
cumulative distribution for the mutant frequency in the population for the two samples.  The 
figure indicates that 90% (Rabies 1) and 92% (Rabies 2) of the mutations occur with less than 
1% frequency and roughly 80% of mutants occur at a frequency of less than 0.2% frequency.

Figure 9.  Within host population diversity.  X-axis shows relative frequency within the population and y-axis shows the 
percentage of mutants in the population that occur at this frequency.

Hypothesis proposal: ultra-rare variants have limited functional 
significance
With such a large percentage of the rare variants occurring at the ultra rare (sub 0.2%) level, the 
biological significance of these observations remain in question.  To get a very rough estimate 
for the potential significance of the rare variants, the two rabies samples were compared and 
shared mutants between the two samples were plotted according to their average relative 



frequency in their respective populations.  These values were compared with the relative 
frequency of mutants that show up in just one sample but not the other.  The results are shown in 
Figure 10.  The mutations shared by samples are hypothesized to variants that ma y be persistent 
within the Northern California outbreak, while sample specific mutants are hypothesized to be 
“transient”, that is, random population snapshots that include viral replicons with either limited 
or no fitness and are detected as a consequence of the ultra sensitive sequencing method.

Figure 10.  Relative frequency within the population of mutants shared by both samples (PersistentareVariant) versus 
mutants ahat occur in just one of thetwo samples (TransientRareVariant).

Figure 10 shows nearly all of the so-called transient mutants are concentrated at the ultra-rare 
level, whereas there is a wider distribution of frequency values for the persistent mutants, that 
includes both ultra-rare and more common variants.  While this is just a limited sample size of 
two it is tempting to speculate that this provides support to the hypothesis that there is an 
enrichment for non-functional random variation at the ultra-rare variant level.  This data may 
ultimately provide additional information for better understanding the raw mutation rates and 
shed light on the potential for random mutations to rise to prominence due to random drift.



A practical strategy for sequencing a large number of samples in a viral 
outbreak
In the next steps of the project, the sequence data will be expanded from the current sample 
count of 2 to 41.  It will not be practical with respect to managing financial resources to dedicate 
ultra high levels of sequencing coverage to every viral sample. Moreover, our results show that it 
may not be particularly useful to pick up every random variant.  The ultra high coverage 
experiments can be used to provide a basis for determining the level of variation that may be 
present, and what can be detected, and thus give a principled basis for devising a “scaled back” 
strategy designed to sequence larger numbers of viral samples.

Figure 11. Sequencing coverage requirements for characterizing mutant spectra in a viral population.

Our proposed approach is to use the maximal number of samples (12) per sequencing lane 
currently supported by Illumina such that each sample can be tagged with a barcode, for 
unambiguous separation of samples within a single sequencing run.  The process effectively 
reduces both the cost by an order of 1/12 (additional per sample library costs arise) as well as the 
coverage.  Using the observed error rates from our initial sequencing run provides the basis for 
anticipating the impact of the reduced coverage on the ability to fully characterize the mutant 
spectra within the sampled population.  Figure 11 shows the anticipated minimum frequency at 
which a mutant can occur within the sample of reads (x-axis) as a function of total coverage (y-



axis).  Two anticipated error rates are shown, the observed error rate from the sequencing control 
and a higher more conservative error estimate of 0.001.  One important observation to note is 
applying the rigorous statistical thresholds leads to exponential increases in sequence coverage 
required for small increases in sensitivity.  For example, with an error rate of 0.00058, the 
amount of coverage required to increase sensitivity from 0.0015 to 0.001 requires an increase 
from roughly 10,000x coverage to 50,000x coverage.  It is important to note that for practical 
purposes, the limit of sensitivity is determined by the error rate rather than sequence coverage.  
This further underscores the importance of using the paired end sequencing reads to lower error 
rate, even at the expense of potentially reduced coverage.

Assuming that each Illumina lane will replicate current preserved performance, 26 million paired 
end reads can be generated (per lane).  Assuming a conservative 75 bases of usable read length 
and coverage of the 12 kb genome yields a raw coverage level of 13,541x when dividing each 
lane into 12 separate barcoded samples.  Moreover, based on observation of assuming roughly 
80% of the reads being usable for base calling and accounting for a 20% variation in coverage 
due to the fact that each barcoded sample is not sequenced at perfectly equal amounts yields a 
lower bound coverage estimate per sample of 8,666x coverage.  The red line in Figure 11, 
highlights the anticipated minimum sensitivity for detecting rare mutants in the population for 
the two distinct error rates suggesting that sensitivity will be reduced by half from 0.08% (using 
the ultra high 100,000x+ coverage) to 0.16%.  The current estimated total per cost sample for 
this process is approximately $1,200 and we are proceeding with this approach for sequencing
the remaining 39 rabies samples.
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